Monoidal functional dependencies
نویسنده
چکیده
We present a complete logic for reasoning with functional dependencies (FDs) with semantics defined over classes of commutative integral partially ordered monoids and complete residuated lattices. The dependencies allow us to express stronger relationships between attribute values than the ordinary FDs. In our setting, the dependencies not only express that certain values are determined by others but also express that similar values of attributes imply similar values of other attributes. We show complete axiomatization using a system of Armstrong-like rules, comment on related computational issues, and the relational vs. propositional semantics of the dependencies.
منابع مشابه
A New Foundation of Attribute Grammars in Traced Symmetric Monoidal Categories
In this paper we propose a new categorical formulation of attribute grammars in traced symmetric monoidal categories. The new formulation, called monoidal attribute grammars, concisely captures the essence of the classical attribute grammars. We study monoidal attribute grammars in two categories: Rel and ωCPPO. It turns out that in Rel monoidal attribute grammars correspond to the graphtheoret...
متن کاملCoherence for monoidal endofunctors
The goal of this paper is to prove coherence results with respect to relational graphs for monoidal endofunctors, i.e. endofunctors of a monoidal category that preserve the monoidal structure up to a natural transformation that need not be an isomorphism. These results are proved first in the absence of symmetry in the monoidal structure, and then with this symmetry. In the later parts of the p...
متن کاملThe symmetric monoidal closed category of cpo $M$-sets
In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.
متن کاملCoherence for monoidal monads and comonads
The goal of this paper is to prove coherence results with respect to relational graphs for monoidal monads and comonads, i.e. monads and comonads in a monoidal category such that the endofunctor of the monad or comonad is a monoidal functor (this means that it preserves the monoidal structure up to a natural transformation that need not be an isomorphism). These results are proved first in the ...
متن کاملTensors, monads and actions
We exhibit sufficient conditions for a monoidal monad T on a monoidal category C to induce a monoidal structure on the Eilenberg–Moore category CT that represents bimorphisms. The category of actions in CT is then shown to be monadic over the base category C.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1409.0980 شماره
صفحات -
تاریخ انتشار 2014